Abstract
An approximate asymptotic expression is obtained for the buckling load of an imperfect column resting on a nonlinear elastic foundation. The result holds for a large range of imperfection shapes, which are assumed to be stationary random functions of position. The asymptotic analysis is based on application of Khas’minskii’s limit theorem to equations for the slowly varying part of the deflection of the column. Previous results obtained for Gaussian imperfection shapes are shown to be valid also for the larger class of random imperfections considered here.

This publication has 7 references indexed in Scilit: