CONJUGATE HEAT TRANSFER AND PARTICLE TRANSPORT IN OUTSIDE VAPOR DEPOSITION PROCESS

Abstract
A numerical study of conjugate heat transfer and particle transport has been carried out for the outside vapor deposition process. A buoyant jet flow impinging on a two-layered cylinder has been analyzed including heat conduction occurring through the two-layered cylinder, which consists of the original target rod and the deposited porous layers. Temperature and flow fields have been obtained by an iterative method, and thermophoretic particle deposition has been studied. Of particular interest are the effects of the thickness of deposited layers, the torch speed, the rotation speed of the cylinder, and the distance between the torch and the cylinder on the heat transfer and particle deposition. Effects of variable properties and tube rotation are also included.

This publication has 11 references indexed in Scilit: