Abstract
Mode properties of a coupled phase-shift distributed-feedback (DFB) structure are analyzed and the feasibility of narrow-linewidth emission is shown theoretically. The structure consists of a multiple number of phase-shift DFB laser units which are arranged in tandem and coupled with each other through additional phase shift of corrugation. Optimum structure parameters were determined for two coupled laser units so that the frequency detuning is zero and the mode pattern is the flattest. The mode analysis shows that the intensity distribution is flatter and the normalized coupling constant can be larger than those for the conventional DFB laser with a single phase shift. This indicates that the cavity length can be extended with less influence from the longitudinal spatial hole burning effect.