Altered Glycosylation of 63- and 68-Kilodalton Microvillar Proteins in Heliothis virescens Correlates with Reduced Cry1 Toxin Binding, Decreased Pore Formation, and Increased Resistance to Bacillus thuringiensis Cry1 Toxins
Open Access
- 1 November 2002
- journal article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 68 (11) , 5711-5717
- https://doi.org/10.1128/aem.68.11.5711-5717.2002
Abstract
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.Keywords
This publication has 66 references indexed in Scilit:
- Identification of a Gene Associated with Bt Resistance in Heliothis virescensScience, 2001
- Bacillus thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediatedInsect Biochemistry and Molecular Biology, 2001
- N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxinJournal of Molecular Biology, 1999
- The Heliothis virescens 170kDa aminopeptidase functions as “Receptor A” by mediating specific Bacillus thuringiensis Cry1A δ-endotoxin binding and pore formationInsect Biochemistry and Molecular Biology, 1997
- A Detailed Lectin Analysis of IgG Glycosylation, Demonstrating Disease Specific Changes in Terminal Galactose and N-acetylglucosamineJournal of Autoimmunity, 1997
- Identification, Isolation, and Cloning of a Bacillus thuringiensis CryIAc Toxin-binding Protein from the Midgut of the Lepidopteran Insect Heliothis virescensPublished by Elsevier ,1995
- Bacillus thuringiensis CryIA(c) δ-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchorInsect Biochemistry and Molecular Biology, 1995
- Insect digestive enzymes: properties, compartmentalization and functionComparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994
- Binding of the delta endotoxin from Bacillus thuringiensis to brush‐border membrane vesicles of the cabbage butterfly (Pieris brassicae)European Journal of Biochemistry, 1988
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976