The effect of interaction on the boundary layer induced by a convected rectilinear vortex
- 1 March 1989
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 200, 337-365
- https://doi.org/10.1017/s0022112089000686
Abstract
The effect of interaction on the boundary layer induced by a convected rectilinear vortex is considered. Two schemes are employed in the numerical discretization of the edge interaction condition; the first, developed by Veldman (1981) is useful at larger Reynolds numbers but fails to capture the interactive phase of the motion for Reynolds numbers less than 8 × 104. A scheme devised by Napolitano, Werlé & Davis (1978) is employed at smaller Reynolds numbers and yields similar results to Veldman's scheme at higher Reynolds numbers, while exhibiting greater numerical stability during the interactive phase of the motion. The effect of interaction is found to be negligible during much of the motion, even for a strong vortex, but during the latter stages of the calculations, interaction appears to round off the top of the eddy and delays breakdown for all Reynolds numbers studied when compared with the non-interactive results of Doligalski & Walker (1984). In addition, in the latter stages of the calculations, and during the early stages of the interactive phase, a third eddy is formed with vorticity of the same sign as the main eddy spawned deep within the boundary layer. Such a tertiary eddy has been observed in the experimental work of Walkeret al.(1987) in their study of the boundary layer induced by a vortex ring. During the interactive phase of the motion a streamwise lengthscale emerges whose length is approximately$O(Re^{-\frac{3}{11}})$, broadly in line with the analytical predictions of Elliott, Cowley & Smith (1983). A novel feature of the computations is the use of a pseudospectral method (Burggraf & Duck 1982) in the streamwise direction which requires no special coding in reversed-flow regions.Keywords
This publication has 20 references indexed in Scilit:
- Finite‐time break‐up can occur in any unsteady interacting boundary layerMathematika, 1988
- On the breakdown of the steady and unsteady interacting boundary-layer descriptionJournal of Fluid Mechanics, 1987
- Spectral solutions for three-dimensional triple-deck flow over surface topographyJournal of Fluid Mechanics, 1986
- On the development of large-sized short-scaled disturbances in boundary layersProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1985
- The boundary layer induced by a convected two-dimensional vortexJournal of Fluid Mechanics, 1984
- New, quasi-simultaneous method to calculate interacting boundary layersAIAA Journal, 1981
- Effect of Reynolds Number on Laminar Separation of a Supersonic StreamAIAA Journal, 1979
- The boundary layer due to rectilinear vortexProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1978
- Perturbation Method in Fluid MechanicsJournal of Applied Mechanics, 1976
- Flowfield produced by trailing vortices in the vicinity of the groundAIAA Journal, 1971