Data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) solar occultation satellite instrument have been used to study the properties of tropical cloud over the altitude range 10.5–18.5 km. By virtue of its limb viewing measurement geometry, SAGE II has good vertical resolution and sensitivity to subvisual cloud not detectable by most other satellite instruments. The geographical distribution and temporal variation of the cloud occurrence have been examined over all longitudes on timescales from less than 1 day to that of the El Niño-Southern Oscillation (ENSO) cycle. Significant variations in cloud occurrence are found on each of these scales and have been compared with the underlying surface temperature changes. Maximum cloud occurs over the warm pool region of the Pacific Ocean, with secondary maxima over the South American and Central African landmasses, where the percentage of cloud occurrence in the upper troposphere can exceed 75%. Cloud occurrence at all altitudes within the T... Abstract Data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) solar occultation satellite instrument have been used to study the properties of tropical cloud over the altitude range 10.5–18.5 km. By virtue of its limb viewing measurement geometry, SAGE II has good vertical resolution and sensitivity to subvisual cloud not detectable by most other satellite instruments. The geographical distribution and temporal variation of the cloud occurrence have been examined over all longitudes on timescales from less than 1 day to that of the El Niño-Southern Oscillation (ENSO) cycle. Significant variations in cloud occurrence are found on each of these scales and have been compared with the underlying surface temperature changes. Maximum cloud occurs over the warm pool region of the Pacific Ocean, with secondary maxima over the South American and Central African landmasses, where the percentage of cloud occurrence in the upper troposphere can exceed 75%. Cloud occurrence at all altitudes within the T...