Minimum BER block precoders for zero-forcing equalization

Abstract
In this paper we derive an analytic expression for the linear precoder which minimizes the bit error rate (BER) for block transmission systems with zero-forcing equalization and threshold detection. The design is developed for the two standard schemes for eliminating inter-block interference; viz, zero padding (ZP) and cyclic prefix (CP). The CP minimum BER precoder has a structure similar to that of the conventional water-filling discrete multitone (DMT) modulation scheme, but the diagonal water-filling power loading matrix is replaced by a full matrix consisting of a diagonal minimum mean square error (MMSE) power loading matrix post-multiplied by a Discrete Fourier Transform (DFT) matrix. The ZP minimum BER precoder has a corresponding structure. Performance evaluations indicate that the signal-to-noise ratio (SNR) gain of the ZP and CP minimum BER precoders over conventional water-filling DMT, MMSE, and orthogonal frequency division multiplexing (OFDM) schemes can be as much as several decibels.
Keywords

This publication has 8 references indexed in Scilit: