Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay
Open Access
- 1 December 1994
- journal article
- research article
- Published by Springer Nature in British Journal of Cancer
- Vol. 70 (6) , 1047-1052
- https://doi.org/10.1038/bjc.1994.446
Abstract
The methyl-thiazol-tetrazolium (MTT) assay is a drug resistance assay which cannot discriminate between malignant and non-malignant cells. We previously reported that samples with > or = 80% leukaemic cells at the start of culture give similar results in the MTT assay and the differential staining cytotoxicity assay, in which a discrimination between malignant and non-malignant cells can be made. However, the percentage of leukaemic cells may change during culture, which might affect the results of the MTT assay. We studied 106 untreated childhood acute lymphoblastic leukemia (ALL) samples with > or = 80% leukaemic cells at the start of culture. This percentage decreased below 80% in 28%, and below 70% in 13%, of the samples after 4 days of culture. A decrease below 70% occurred more often in case of 80-89% leukaemic cells (9/29) than in case of > or = 90% leukaemic cells at the start of culture (5/77, P = 0.0009). Samples with < 70% leukaemic cells after culture were significantly more resistant to 6 out of 13 drugs, and showed a trend towards being more resistant to two more drugs, than samples with > or = 80% leukaemic cells. No such differences were seen between samples with 70-79% and samples with > or = 80% leukaemic cells after culture. We next studied in another 30 ALL samples whether contaminating mononuclear cells could be removed by using immunoamagnetic beads. Using a beads to target cell ratio of 10:1, the percentage of leukaemic cells increased from mean 72% (s.d. 9.3%) to mean 87% (s.d. 6.7%), with an absolute increase of 2-35%. The recovery of leukaemic cells was mean 82.1% (range 56-100%, s.d. 14.0%). The procedure itself did not influence the results of the MTT assay in three samples containing only leukaemic cells. We conclude that it is important to determine the percentage of leukaemic cells at the start and at the end of the MTT assay and similar drug resistance assays. Contaminating mononuclear cells can be successfully removed from ALL samples using immunomagnetic beads. This approach may increase the number of leukaemic samples which can be evaluated for cellular drug resistance with the MTT assay or a similar cell culture drug resistance assay.Keywords
This publication has 24 references indexed in Scilit:
- Prediction of chemotherapy response in human leukemia using in vitro chemosensitivity testLeukemia Research, 1993
- Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA)International Journal of Cancer, 1992
- Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemiaThe Lancet, 1991
- DRUG SENSITIVITY ASSAYS IN LEUKAEMIA AND LYMPHOMABritish Journal of Haematology, 1990
- Chemosensitivity testing of fresh human leukemia cells using both a dye exclusion assay and a tetrazolium dye (MTT) assayLeukemia Research, 1989
- In vitro chemosensitivity testing of leukemic cells: Prediction of response to chemotherapy in patients with acute non-lymphocytic leukemiaHematological Oncology, 1989
- Improved Detection of Allele Loss in Renal Cell Carcinomas After Removal of Leukocytes by Immunologic SelectionJNCI Journal of the National Cancer Institute, 1989
- Chemosensitivity testing of fresh leukaemia cells using the MTT colorimetric assayBritish Journal of Haematology, 1989
- Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemiaCancer Letters, 1988
- Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assaysJournal of Immunological Methods, 1983