Parameter Sensitive Detectors
- 1 June 2007
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
Abstract
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.Keywords
This publication has 8 references indexed in Scilit:
- Fast Human Detection Using a Cascade of Histograms of Oriented GradientsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2006
- Histograms of Oriented Gradients for Human DetectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Sharing features: efficient boosting procedures for multiclass object detectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2004
- Robust Real-Time Face DetectionInternational Journal of Computer Vision, 2004
- Estimating 3D hand pose from a cluttered imagePublished by Institute of Electrical and Electronics Engineers (IEEE) ,2003
- Fast pose estimation with parameter-sensitive hashingPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2003
- A statistical method for 3D object detection applied to faces and carsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Boosting the margin: a new explanation for the effectiveness of voting methodsThe Annals of Statistics, 1998