Trafficking of Siderophore Transporters in Saccharomyces cerevisiae and Intracellular Fate of Ferrioxamine B Conjugates
Open Access
- 20 July 2007
- Vol. 8 (11) , 1601-1616
- https://doi.org/10.1111/j.1600-0854.2007.00627.x
Abstract
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.Keywords
This publication has 53 references indexed in Scilit:
- GGA2- and Ubiquitin-dependent Trafficking of Arn1, the Ferrichrome Transporter ofSaccharomyces cerevisiaeMolecular Biology of the Cell, 2007
- Amino Acids Regulate Retrieval of the Yeast General Amino Acid Permease from the Vacuolar Targeting PathwayMolecular Biology of the Cell, 2006
- Ferrichrome in Schizosaccharomyces pombe ? an iron transport and iron storage compoundBioMetals, 2004
- Antagonistic Roles of ESCRT and Vps Class C/HOPS Complexes in the Recycling of Yeast Membrane ProteinsMolecular Biology of the Cell, 2004
- Global analysis of protein localization in budding yeastNature, 2003
- A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in YeastScience, 1996
- The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptakePublished by Elsevier ,1994
- The design, synthesis and study of siderophore-antibiotic conjugates Siderophore mediated drug transportBioMetals, 1991
- Iron storage in Saccharomyces cerevisiaeFEBS Letters, 1988
- Iron Uptake by the Yeast Saccharomyces cerevisiae: Involvement of a Reduction StepMicrobiology, 1987