A Dynamic Balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and Retinoic Acid Receptor:Retinoid X Receptor Heterodimers Regulates Oct-3/4 Expression in Embryonal Carcinoma Cells
Open Access
- 1 February 1995
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 15 (2) , 1034-1048
- https://doi.org/10.1128/mcb.15.2.1034
Abstract
The Oct-3/4 transcription factor is a member of the POU family of transcription factors and, as such, probably plays a crucial role in mammalian embryogenesis and differentiation. It is expressed in the earliest stages of embryogenesis and repressed in subsequent stages. Similarly, Oct-3/4 is expressed in embryonal carcinoma (EC) cells and is repressed in retinoic acid (RA)-differentiated EC cells. Previously we have shown that the Oct-3/4 promoter harbors an RA-responsive element, RAREoct, which functions in EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for negative regulators. Our present results demonstrate that in P19 and RA-treated P19 cells, the orphan receptors ARP-1/COUP-TFII and EAR-3/COUP-TFI repress Oct-3/4 promoter activity through the RAREoct site in a dose-dependent manner. While the N-terminal region of the ARP-1/COUP-TFII receptor is dispensable for this repression, the C-terminal domain harbors the silencing region. Interestingly, three different RA receptor:retinoid X receptor (RAR:RXR) heterodimers, RAR alpha:RXR alpha, RAR beta:RXR alpha, and RAR beta:RXR beta, specifically bind and activate Oct-3/4 promoter through the RAREoct site in a ligand-dependent manner. We have shown that antagonism between ARP-1/COUP-TFII or EAR-3/COUP-TFI and the RAR:RXR heterodimers and their intracellular balance modulate Oct-3/4 expression. Oct-3/4 transcriptional repression by the orphan receptors can be overcome by increasing amounts of RAR:RXR heterodimers. Conversely, activation of Oct-3/4 promoter by RAR:RXR heterodimers was completely abolished by EAR-3/COUP-TFI and by ARP-1/COUP-TFII. The orphan receptors bind the RAREoct site with a much higher affinity than the RAR:RXR heterodimers. This high binding affinity provides ARP-1/COUP-TFII and EAR-3/COUP-TFI with the ability to compete with and even displace RAR:RXR from the RAREoct site and subsequently to actively silence the Oct-3/4 promoter. We have shown that RA treatment of EC cells results in up-regulation of ARP-1/COUP-TFII and EAR-3/COUP-TFI expression. Most interestingly, in RA-treated EC cells, the kinetics of Oct-3/4 repression inversely correlates with the kinetics of ARP-1/COUP-TFII and EAR-3/COUP-TFI activation. These findings are in accordance with the suggestion that these orphan receptors participate in controlling a network of transcription factors, among which Oct-3/4 is included, which may establish the pattern of normal gene expression during development.Keywords
This publication has 70 references indexed in Scilit:
- Estrogen response module of the mouse lactoferrin gene contains overlapping chicken ovalbumin upstream promoter transcription factor and estrogen receptor-binding elementsMolecular Endocrinology, 1992
- Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signallingNature, 1992
- Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptorsNature, 1992
- 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRαNature, 1992
- The transcription factor, Egr-1, is rapidly modulated in response to retinoic acid in P19 embryonal carcinoma cellsDevelopmental Biology, 1991
- A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryoNature, 1990
- New type of POU domain in germ line-specific protein Oct-4Nature, 1990
- Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicingNature, 1989
- Nuclear receptors enhance our understanding of transcription regulationTrends in Genetics, 1988
- THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONSAnnals of the New York Academy of Sciences, 1949