The dipeptidyl-aminopeptidase-like protein 6 is an integral voltage sensor-interacting β-subunit of neuronal KV4.2 channels

Abstract
Auxiliary β-subunits dictate the physiological properties of voltage-gated K+ (KV) channels in excitable tissues. In many instances, however, the underlying mechanisms of action are poorly understood. The dipeptidyl-aminopeptidase-like protein 6 (DPP6) is a specific β-subunit of neuronal KV4 channels, which may promote gating through interactions between the single transmembrane segment of DPP6 and the channel’s voltage sensing domain (VSD). A combination of gating current measurements and protein biochemistry (in-vitro translation and co-immunoprecipitations) revealed preferential physical interaction between the isolated KV4.2-VSD and DPP6. Significantly weaker interactions were detected between DPP6 and KV1.3 channels or the KV4.2 pore domain. More efficient gating charge movement resulting from a direct interaction between DPP6 and the KV4.2-VSD is unique among the known actions of KV channel β-subunits. This study shows that the modular VSD of a KV channel can be directly regulated by transmembrane protein-protein interactions involving an extrinsic β-subunit. Understanding these interactions may shed light on the pathophysiology of recently identified human disorders associated with mutations affecting the dpp6 gene.