Abstract
Vapor explosions were produced by injecting small quantities of water into a container filled with molten NaCl. Minimum explosion efficiencies, as evaluated from reaction-impulse measurements, were relatively large. Subsurface movies showed that the explosions resulted from a two-step sequence: an initial bulk-mixing phase in which the two liquids intermix on a large scale, but remain locally separated by an insulating gas-vapor layer; and a second step, immediately following breakdown of the gas layer, during which the two liquids locally fragment, intermix, and pressurize very rapidly. The experimental results were compared with various mechanistic models that had been proposed to explain vapor explosions. Early models seemed inconsistent with the results. More recent theories suggest that vapor explosions may be caused by a nucleation limit or by dynamic mixing combined with high surface-heat-transfer rates. Both types of models are consistent with the results.

This publication has 0 references indexed in Scilit: