Stability constants for silicate adsorbed to ferrihydrite
- 1 September 1994
- journal article
- Published by Mineralogical Society in Clay Minerals
- Vol. 29 (3) , 341-350
- https://doi.org/10.1180/claymin.1994.029.3.05
Abstract
Intrinsic surface acidity constants (Kalintr, Ka2intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (Ksi for the complex ≡FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 M NaClO4 electrolytes and silicate adsorption experiments in 0.01 M NaNOi electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak ' Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate required days-weeks, both reactions probably being diffusion controlled. Applying the values for specific surface area and site densities for ferrihydrite used by Dzombak ' Morel (1990) (600 m2 g–1, 3.4 μmole m–2) the constants pKalintr = 6.93 ± 0.12, pKa2intr = 8.72 ± 0.17 and log Ksi = 3.62 were calculated by using the FITEQL optimization routine. Use of the specific surface area actually measured (269 m2 g-1) gave a poorer fit of the experimental data. Due to the slow adsorption of silicate and hence long shaking times, changes in the surface characteristics of the ferrihydrite seem to take place, probably a decrease in the concentration of surface sites. Adsorption isotherms calculated using the derived equilibrium constants showed that approximately twice the amount of silicate was adsorbed at pH 5 compared with pH 3.Infrared spectroscopy of silica adsorbed to ferrihydrite showed Si-O stretching absorption maxima in the range 940-960 cm-1. The shift of the absorption maximum to higher wavenumbers with increasing amount of silicate adsorbed is probably due to an increase in the frequency of Si-O-Si bonds between orthosilicate adsorbed at adjacent sites. Small amounts of goethite were identified in the adsorption products.Keywords
This publication has 27 references indexed in Scilit:
- Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitationGeochimica et Cosmochimica Acta, 1993
- Constant-Capacitance Surface Complexation ModelPublished by American Chemical Society (ACS) ,1990
- Effect of silicon on the crystallization and adsorption properties of ferric oxidesEnvironmental Science & Technology, 1985
- Interaction of orthophosphate with iron(III) and aluminum hydroxidesEnvironmental Science & Technology, 1980
- The Influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutionsClay Minerals, 1976
- Natural “amorphous” ferric hydroxideGeoderma, 1973
- Adsorption Interactions of Monosilicic and Boric Acid on Hydrous Oxides of Iron and AluminumSoil Science Society of America Journal, 1972
- HETEROGENEITY IN SILICON‐IRON MIXED HYDROXIDESEuropean Journal of Soil Science, 1969
- The Octahedral LayerClays and clay minerals (National Conference on Clays and Clay Minerals), 1963
- The Reaction of Low Molecular Weight Silicic Acids with Molybdic AcidJournal of the American Chemical Society, 1953