Modelling non–additive and nonlinear signals from climatic noise in ecological time series: Soay sheep as an example
Open Access
- 7 October 2004
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 271 (1552) , 1985-1993
- https://doi.org/10.1098/rspb.2004.2794
Abstract
Understanding how climate can interact with other factors in determining patterns of species abundance is a persistent challenge in ecology. Recent research has suggested that the dynamics exhibited by some populations may be a non–additive function of climate, with climate affecting population growth more strongly at high density than at low density. However, we lack methodologies to adequately explain patterns in population growth generated as a result of interactions between intrinsic factors and extrinsic climatic variation in non–linear systems. We present a novel method (the Functional Coefficient Threshold Auto–Regressive (FCTAR) method) that can identify interacting influences of climate and density on population dynamics from time–series data. We demonstrate its use on count data on the size of the Soay sheep population, which is known to exhibit dynamics generated by nonlinear and non–additive interactions between density and climate, living on Hirta in the St Kilda archipelago. The FCTAR method suggests that climate fluctuations can drive the Soay sheep population between different dynamical regimes—from stable population size through limit cycles and non–periodic fluctuations.Keywords
This publication has 42 references indexed in Scilit:
- Biological populations obeying difference equations: Stable points, stable cycles, and chaosPublished by Elsevier ,2004
- Burmann expansion and test for additivityBiometrika, 2003
- Ecological responses to recent climate changeNature, 2002
- Climate and population density induce long‐term cohort variation in a northern ungulateJournal of Animal Ecology, 2001
- LIVING ON THE EDGE OF CHAOS: POPULATION DYNAMICS OF FENNOSCANDIAN VOLESEcology, 2000
- Can environmental fluctuation prevent competitive exclusion in sympatric flycatchers?Proceedings Of The Royal Society B-Biological Sciences, 1999
- Phase- and density-dependent population dynamics in Norwegian lemmings: interaction between deterministic and stochastic processesProceedings Of The Royal Society B-Biological Sciences, 1998
- Voles and lemmings: chaos and uncertainty in fluctuating populationsProceedings Of The Royal Society B-Biological Sciences, 1995
- Nonlinear forecasting for the classification of natural time seriesPhilosophical Transactions A, 1994
- Overcompensation and population cycles in an ungulateNature, 1992