Solution structure of human neuropeptide Y
- 1 December 1996
- journal article
- Published by Springer Nature in Journal of Biomolecular NMR
- Vol. 8 (4) , 379-390
- https://doi.org/10.1007/bf00228141
Abstract
The three-dimensional structure of synthetic human neuropeptide Y in aqueous solution at pH 3.2 and 37°C was determined from two-dimensional 1H NMR data recorded at 600 MHz. A restraint set consisting of 440 interproton distance restraints inferred from NOEs and 11 backbone and 4 side-chain dihedral angle restraints derived from spin-spin coupling constants was used as input for distance geometry calculations in DIANA and simulated annealing and restrained energy minimisation in X-PLOR. The final set of 26 structures is well defined in the region of residues 11–36, with a mean pairwise rmsd of 0.51 Å for the backbone heavy atoms (N, Cα and C) and 1.34 Å for all heavy atoms. Residues 13–36 form an amphipathic α-helix. The N-terminal 10 residues are poorly defined relative to the helical region, although some elements of local structure are apparent. At least one of the three prolines in this N-terminal region co-exists in both cis and trans conformations. An additional set of 24 distances was interpreted as intermolecular distances within a dimer. A combination of distance geometry and restrained simulated annealing yielded a model of the dimer having antiparallel packing of two helical units, whose hydrophobic faces form a well-defined core. Sedimentation equilibrium experiments confirm the observation that neuropeptide Y associates to form dimers and higher aggregates under the conditions of the NMR experiments. Our results therefore support the structural features reported for porcine neuropeptide Y [Cowley, D.J. et al. (1992) Eur. J. Biochem., 205, 1099–1106] rather than the ‘aPP’ fold described previously for human neuropeptide Y [Darbon, H. et al. (1992) Eur. J. Biochem., 209, 765–771].Keywords
This publication has 0 references indexed in Scilit: