Abstract
An analytical technique for aerosol samples which utilizes the resonance Raman effect is described. The aerosol particles were generated at 50 kHz by a vibrating orifice. The nominal particle size was 45 µm in diameter. The visible lines (4579, 4765, 4880, and 5145 Å) of a continuous argon-ion laser were used as the excitation source. Within the coverage of the laser wavelengths, effects of pre-resonance, resonance, and post-resonance Raman scattering were studied. Under the resonance condition, the enhancement of p-nitrosodimethylaniline is 5.5 × 104 when compared to that of nitrate ions. The corresponding concentration of detection limit is 10−6 molar.