Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils

Abstract
Soil organic C content, a major source of system stability in agroecosystems, is controlled by many factors that have complex interactions. The purpose of this study was to evaluate the major controls over soil organic carbon content, and to predict regional patterns of carbon in range and cultivated soils. We obtained pedon and climate data for 500 rangeland and 300 cultivated soils in the U.S. Central Plains Grasslands, and statistically analyzed relationships between C and soil texture and climate. Regression models of the regional soils database indicated that organic C increased with precipitation and clay content, and decreased with temperature. Analysis of cultivated and rangeland soils indicated that C losses due to cultivation increased with precipitation, and that relative organic C losses are lowest in clay soils. Application of the regression models to a regional climate database showed potential soil organic matter losses to be highest in the northeastern section of the Central Plains Grasslands, decreasing generally from east to west. These statistical data analyses can be combined with more mechanistic models to evaluate controls of soil organic matter formation and turnover, and the implications for regional management.