Rotational invariance of trellis codes. II. Group codes and decoders

Abstract
For pt.I see ibid., vol.42, no.3, p.751-65 (1996). In Part I, general results on rotationally invariant codes and encoders were derived assuming no algebraic structure. In Part II, trellis codes based on group systems are considered as a special case for which code and encoder constructions are particularly simple. Rotational invariance is expressed as an algebraic constraint on a group code, and algebraic constructions are found for both "absorbed precoder" encoders and for encoders with separate differential precoders. Finally, the various encoder forms used to achieve rotational invariance are compared based on their performance on an AWGN channel

This publication has 8 references indexed in Scilit: