Characterization of the Dihydropyridine Binding Sites of Rat Neocortical Synaptosomes and Microvessels

Abstract
The dihydropyridine binding sites associated with rat neocortical synaptosomes and microvessels were compared using an in vitro [3H]PN 200-110 [(+)-[methyl-3H]-isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-methoxycarbonylpyridine-3-carboxylate] binding assay. Saturation experiments yielded similar KD values (.apprx. 70 pM) and Bmax values (.apprx. 400 fmol/mg of protein) for the two membrane preparations. Interaction experiments with [3H]PN 200-110 and various calcium-modulating substances provided further evidence for the practically identical nature of the synaptosomal and microvascular dihydropyridine binding sites. These findings predict that lipophilic dihydropyridines, simultaneously occupying the two central binding sites, have the dual effect of altering neuronal function and local blood flow.