The New DAMA Dark-Matter Window and Energetic-Neutrino Searches
Preprint
- 19 August 2008
Abstract
Recently, the DAMA/LIBRA collaboration has repeated and reinforced their claim to have detected an annual modulation in their signal rate, and have interpreted this observation as evidence for dark-matter particles at the 8.2 sigma confidence level. Furthermore, it has also been noted that the effects of channeling may enable a WIMP that scatters elastically via spin-independent interactions from nuclei to produce the signal observed by DAMA/LIBRA without exceeding the limits placed by CDMS, XENON, CRESST, CoGeNT and other direct-detection experiments. To accommodate this signal, however, the mass of the responsible dark-matter particle must be relatively light, m_{DM} \lsim 10 GeV. Such dark-matter particles will become captured by and annihilate in the Sun at very high rates, leading to a potentially large flux of GeV-scale neutrinos. We calculate the neutrino spectrum resulting from WIMP annihilations in the Sun and show that existing limits from Super-Kamiokande can be used to close a significant portion of the DAMA region, especially if the dark-matter particles produce tau leptons or neutrinos in a sizable fraction of their annihilations. We also determine the spin-dependent WIMP-nuclei elastic-scattering parameter space consistent with DAMA. The constraints from Super-Kamiokande on the spin-dependent scenario are even more severe--they exclude any self-annihilating WIMP in the DAMA region that annihilates 1% of the time or more to any combination of neutrinos, tau leptons, or charm or bottom quarks.Keywords
All Related Versions
- Version 1, 2008-08-19, ArXiv
- Published version: Physical Review D, 79 (1), 015010.
This publication has 0 references indexed in Scilit: