Effects of Continuous and Intermittent Cold (SART) Stress on Sympathoadrenal System Activity in Rats
- 1 January 1996
- journal article
- research article
- Published by Wiley in Journal of Neuroendocrinology
- Vol. 8 (1) , 65-72
- https://doi.org/10.1111/j.1365-2826.1996.tb00687.x
Abstract
We compared sympathoadrenal responses to intermittent cold (SART) stress (in which cold exposure is interrupted by 4-hourly intervals daily at room temperature) with those to continuous cold (-3 degrees C) stress. Plasma levels of dihydroxyphenylalanine (DOPA), catecholamines and their metabolites as well as tyrosine hydroxylase (TH) activities in sympathetically innervated tissues were examined in rats exposed to each stressor for 1 day or for 5 days. Neither SART nor continuous exposure to cold for 1 day or 5 days altered plasma epinephrine (EPI) levels. However, norepinephrine (NE) and dihydroxyphenylglycol (DHPG) levels increased markedly during exposure to these stressors. On the first day of SART or continuous cold stress, NE levels were increased similarly, but the increments in DHPG levels were greater during SART stress. Since DHPG is formed in neurons, neural reuptake of NE may be more enhanced on the first day of SART stress than on the first day of continuous cold stress. After 5 days of SART stress plasma NE levels were significantly higher than those found after 5 days of continuous cold exposure. Plasma levels of DHPG were elevated to the same extent in both 5 days SART- and continuously cold-stressed rats, whereas plasma levels of methoxyhydroxyphenylglycol (MHPG) increased only by 5 days SART stress. Even at 1 h after the removal from 5 days SART stress, increased plasma levels of NE, DHPG and MHPG were still evident. These results suggest that 5 days SART stress elevates extraneuronal O-methylation of DHPG, and that NE turnover is more greatly increased by SART stress than by continuous cold stress. Plasma levels of DOPA, dopamine, dihydroxyphenylacetic acid and homovanillic acid also increased after either SART or continuous cold stress for 1 day and 5 days. Adrenal TH activities were significantly increased in rats exposed to SART or continuous cold stress for 1 day and 5 days, but in brown fat TH activity was elevated only in rats exposed to 5 days of continuous cold. Both SART and continuous cold stress are selective and potent stimuli for activation of the sympathoneural system, apparently without significant adrenomedullary EPI release. The increase of TH activity in the brown fat pad as well as of plasma NE and its metabolites is probably a result of adaptation to cold. It appears that even short intervals of return to a normal environmental temperature, as in SART, are sufficient to diminish sympathetic adaptation to cold.Keywords
This publication has 36 references indexed in Scilit:
- Plasma catecholamine levels in SART‐stressed rats and effects of drugs on stress‐induced alteration in plasma and brain catecholamine levelsJournal of Autonomic Pharmacology, 1991
- Habituation and sensitization of plasma catecholamine responses to chronic intermittent stress: Effects of stressor intensityPhysiology & Behavior, 1990
- Source and Physiological Significance of Plasma 3,4-Dihydroxyphenylalanine in the RatJournal of Neurochemistry, 1988
- Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycolJournal of the Autonomic Nervous System, 1988
- Effects of cold and immobilization stress on noradrenaline turnover in brown adipose tissue of rat.The Japanese Journal of Physiology, 1987
- Peripheral origin of plasma dopamine.Japanese Circulation Journal, 1985
- Decrease of ACh response in isolated duodenum from SART stressed (repeated cold stressed) miceFolia Pharmacologica Japonica, 1979
- Decrease in muscarinic acetylcholine receptors in the small intestine of mice subjected to repeated cold stressLife Sciences, 1978
- The activation of tyrosine hydroxylase in noradrenergic neurons during acute nerve stimulationLife Sciences, 1978
- An Analysis of the Current-Voltage Relationship in Excitable Nitella CellsActa Physiologica Scandinavica, 1961