• preprint
    • Published in RePEc
Abstract
Nonlinear regression with measurement error is important for estimation from microeconomic data. One approach to identification and estimation is a causal model, in which the unobserved true variable is predicted by observable variables. This paper details the estimation of such a model using simulated moments and a flexible disturbance distribution. An estimator of the asymptotic variance is given for parametric models. Also, a semiparametric consistency result is given. The value of the estimator is demonstrated in a Monte Carlo study and an application to estimating Engel Curves. © 2001 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology (This abstract was borrowed from another version of this item.)
All Related Versions

This publication has 0 references indexed in Scilit: