Abstract
Ninomiya, in his thesis [13] on the potential theory with respect to a positive symmetric continuous kernel G on a locally compact Hausdorff space Ω, proves that G satisfies the balayage (resp. equilibrium) principle if and only if G satisfies the domination (resp. maximum) principle. He starts from the Gauss-Ninomiya variation and shows that for any given compact set K in Ω and any positive upper semi-continuous function u on K, there exists a positive measure μ on K such that its potential is ≥ u on the support of μ and Gμ≥u on K almost everywhere with respect to any positive measure with finite energy.

This publication has 3 references indexed in Scilit: