The Mechanism of the Scopoletin-induced Inhibition of the Peroxidase Catalyzed Degradation of Indole-3-acetate
- 1 June 1972
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 49 (6) , 1012-1018
- https://doi.org/10.1104/pp.49.6.1012
Abstract
The naturally occurring coumarin, scopoletin, has been found to modify horseradish peroxidase rapidly to give a stable, spectroscopically distinguishable form of the enzyme. Peroxidase treated with scopoletin is less active in reactions with molecular oxygen and indole-3-acetic acid. Kinetic data for the degradation of this growth regulator were obtained with a continuously monitored fluorometric procedure. Lineweaver-Burk plots of the reciprocal rate of degradation against the reciprocal substrate concentration were markedly curved in the presence of the inhibitor, scopoletin. Excess indole-3-acetate restored the scopoletin-treated enzyme to a reactive state. In the presence of molecular oxygen, concentrations of indole-3-acetic acid which were at least 10-fold greater than the inhibitor concentration led to the rapid oxidation of the coumarin and converted peroxidase to compound III as expected from previous studies. This form of the enzyme is the catalytically active species in the oxidative degradation of the growth regulator. The kinetically preferential reaction of scopoletin or related coumarins with peroxidase and the suppression of indole-3-acetic acid degradation may provide a possible control mechanism over the oxidative degradation of indole-3-acetate by this plant enzyme.Keywords
This publication has 7 references indexed in Scilit:
- Effect of Scopoletin on Two Anodic Isoperoxidases Isolated from Tobacco Tissue Culture W-38Plant Physiology, 1971
- The electronic structure of protoheme proteins. 3. Configuration of the heme and its ligands.1968
- The formation and reactivity of peroxidase Compound IIIBiochimica et Biophysica Acta (BBA) - Enzymology, 1967
- The Role of Horseradish Peroxidase in Indole-3-acetic Acid Oxidation*Biochemistry, 1965
- Destruction of indoleacetic acidArchives of Biochemistry and Biophysics, 1962
- The conversion of indole-3-acetic acid to 3-methylene-oxindole in the presence of peroxidaseBiochemical and Biophysical Research Communications, 1961
- Effect of Scopoletin on Indoleacetic Acid MetabolismNature, 1952