Fonctions constructibles exponentielles, transformation de Fourier motivique et principe de transfert
- 11 November 2005
- journal article
- Published by Cellule MathDoc/Centre Mersenne in Comptes Rendus Mathematique
- Vol. 341 (12) , 741-746
- https://doi.org/10.1016/j.crma.2005.10.008
Abstract
We introduce spaces of exponential constructible functions in the motivic setting for which we construct direct image functors in the absolute and relative cases. This allows us to define a motivic Fourier transformation for which we get various inversion statements. We define also motivic Schwartz–Bruhat spaces on which motivic Fourier transformation induces an isomorphism. Our motivic integrals specialize to non-Archimedian integrals. We give a general transfer principle comparing identities between functions defined by integrals over local fields of characteristic zero, resp. positive, having the same residue field. Details of constructions and proofs will be given elsewhere. To cite this article: R. Cluckers, F. Loeser, C. R. Acad. Sci. Paris, Ser. I 341 (2005).Keywords
This publication has 6 references indexed in Scilit:
- Fonctions constructibles et intégration motivique IIComptes Rendus Mathematique, 2004
- Fonctions constructibles et intégration motivique IComptes Rendus Mathematique, 2004
- Good orbital integralsRepresentation Theory of the American Mathematical Society, 2004
- Kloosterman identities over a quadratic extensionAnnals of Mathematics, 2004
- Faisceaux pervers, homomorphisme de changement de base et lemme fondamental de jacquet et yeAnnales Scientifiques de lʼÉcole Normale Supérieure, 1999
- Relative Kloosterman integrals for GL(3)Bulletin de la Société Mathématiques de France, 1992