High-frequency vortex dynamics in

Abstract
We present a phenomenological description of the high-frequency vortex dynamics in and discuss the main parameters related to vortex motion, namely the viscous drag coefficient , the pinning constant (Labusch parameter) and the depinning frequency . We demonstrate experimental results on the angular and temperature dependence of , and in and compare these results with existing models. We show how studies of the vortex viscosity may yield information on the superclean limit. This limit corresponds to the formation of the discrete excitation spectrum in the vortex core due to quantum confinement and small coherence length. From the low-temperature viscosity data we conclude that the superclean limit in is reached for magnetic field perpendicular to the c-axis.