The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys).
- 1 August 1995
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 96 (2) , 1053-1058
- https://doi.org/10.1172/jci118091
Abstract
Intermolecular end-to-middle domain pairing between a thrombin-exposed 'A' polymerization site in the central 'E' domain of fibrin, and a constitutive complementary 'a' site in each outer 'D' domain ('D:E'), is necessary but not alone sufficient for normal fibrin assembly, as judged from previous studies of a congenital dysfibrinogen, Tokyo II (gamma 275 arg-->cys), which showed defective fibrin clot assembly and a normal D:E interaction (Matsuda, M., M. Baba, K. Morimoto, and C. Nakamikawa, 1983. J. Clin. Invest. 72:1034-1041). In addition to the 'a' polymerization site, two other constitutive intermolecular association sites on fibrinogen D domains have been defined: between gamma chain regions containing the carboxy-terminal factor XIIIa crosslinking site ('gamma XL:gamma XL'); and between sites located at the outer ends of each molecule ('D:D') (Mosesson, M. W., K. R. Siebenlist, J. F. Hainfeld, and J. S. Wall, manuscript submitted for publication). We evaluated the function of these sites in Tokyo II fibrinogen, and confirmed that there was a normal fibrin D:E interaction, as determined from a normal fibrin crosslinking rate in the presence of factor XIIIa. We also found a normal gamma XL: gamma XL interaction, as assessed by a normal fibrinogen crosslinking rate. Judging from electron microscopic images, factor XIIIa-crosslinked Tokyo II fibrinogen failed to form elongated double-stranded fibrils like normal fibrinogen. Instead, it formed aggregated disordered collections of molecules, with occasional short fibrillar segments. In addition, Tokyo II fibrin formed an abnormal, extensively branched clot network containing many tapered terminating fibers. These findings indicate that the Tokyo II fibrinogen defect results in a functionally abnormal D:D self-association site, and that a normal D:D site interaction is required, in addition to D:E, for normal fibrin or fibrinogen assembly.Keywords
This publication has 25 references indexed in Scilit:
- Fibrinogen Milano V: a congenital dysfibrinogenaemia with a gamma 275 Arg-->Cys substitution.1994
- Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction.1993
- FIBRINOGEN BIRMINGHAM - A HETEROZYGOUS DYSFIBRINOGENEMIA (A-ALPHA 16 ARG-] HIS) CONTAINING HETERODIMERIC MOLECULES1988
- Physiological studies on fibrin network structureThrombosis Research, 1985
- FIBRIN ASSEMBLY*Annals of the New York Academy of Sciences, 1983
- Relations between enzymatic and association reactions in the development of bovine fibrin clot structureArchives of Biochemistry and Biophysics, 1981
- Morphology of bovine fibrinogen monomers and fibrin oligomersJournal of Molecular Biology, 1981
- Evidence for four different polymerization sites involved in human fibrin formation.Proceedings of the National Academy of Sciences, 1980
- Fibrinogen Detroit - an abnormal fibrinogen with non-functional NH2-terminal polymerization domainThrombosis Research, 1976
- The Preparation and Properties of Human Fibrinogen of Relatively High Solubility*Biochemistry, 1966