PSR J1022+1001: Profile Stability & Precision Timing

Abstract
We present an investigation of the morphology and arrival times of integrated radio pulses from the binary millisecond pulsar PSR J1022+1001. This pulsar is renowned for its poor timing properties, which have been postulated to originate from variability in its average pulse profile. Although a sub-class of long-period pulsars are known to exhibit mode changes that give rise to very large deviations in their integrated profiles, this was the first millisecond pulsar thought to have an unstable mean profile. As part of a precision timing program at the Parkes radio telescope we observed this pulsar between January 2003 and March 2004 using a coherent de-dispersion system (CPSR2). A study of morphological variability during our brightest observations suggests that the pulse profile varies by at most a few percent, similar to the uncertainty in our calibration. Unlike previous authors, we find that this pulsar times extremely well. In five minute integrations of 64 MHz bands we obtain a weighted RMS residual of just 2.27 microseconds. The reduced chi-squared of our best fit is 1.43, which suggests that this pulsar can be timed to high accuracy with standard cross-correlation techniques. Combining relativistic constraints with the pulsar mass function and consideration of the Chandrasekhar mass limit on the white dwarf companion, we can constrain the inclination angle of the system to lie within the range 37 < i < 56 degrees. For reasonable pulsar masses, this suggests that the white dwarf is at least 0.9 solar masses. We also find evidence for secular evolution of the projected semi-major axis.

This publication has 0 references indexed in Scilit: