Abstract
The Hubbard model with an additional bond-charge interaction $X$ is solved exactly in one dimension for the case $t=X$ where $t$ is the hopping amplitude. In this case the number of doubly occupied sites is conserved. In the sector with no double occupations the model reduces to the $U=\infty$ Hubbard model. In arbitrary dimensions the qualitative form of the phase diagram is obtained. It is shown that for moderate Hubbard interactions $U$ the model has superconducting ground states.