Two theorems on excellent rings
- 1 February 1976
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 60, 139-149
- https://doi.org/10.1017/s0027763000017190
Abstract
Let f: A → B be a homomorphism of commutative noetherian rings. The main results of this paper are:(a) Assume f is finite and induces a surjective map on the spectra. Then if B is quasi-excellent A is quasi-excellent and is excellent if it is universally catenarian (Th. 3.1); and(b) If f is absolutely flat and A is excellent then B is excellent (Th. 5.3). In particular the strict henselization of an excellent local ring is excellent (Cor. 5.6.).Keywords
This publication has 6 references indexed in Scilit:
- Localisation de la lissite formellemanuscripta mathematica, 1974
- Catenary Rings and the Altitude FormulaAmerican Journal of Mathematics, 1972
- Monomorphismes et morphismes absolument platsBulletin de la Société Mathématiques de France, 1972
- Sugli omomorfismi quasi étale e gli anelli eccellentiAnnali di Matematica Pura ed Applicata (1923 -), 1971
- Topics in ĉ-adic TopologiesPublished by Springer Nature ,1971
- Anneaux henséliens et conditions de chaînesBulletin de la Société Mathématiques de France, 1970