Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro
- 1 October 1988
- journal article
- research article
- Published by Wiley in Journal of Neuroscience Research
- Vol. 21 (2-4) , 352-364
- https://doi.org/10.1002/jnr.490210227
Abstract
In the central nervous system, nerve growth factor (NGF) affects basal forebrain cholinergic neurons during early development and in the adult mammalian brain. These neurons are located in medial septum, diagonal band of Broca, and nucleus basalis of Meynert. While the effects of NGF on the development of septal cholinergic neurons are well documented, only little is known about the influence of NGF on development of cholinergic neurons in the nucleus basalis. In addition to the basal forebrain cholinergic neurons, there are cholinergic interneurons in the corpus striatum, which form an anatomically and functionally distinct population of cholinergic neurons. These striatal interneurons have been reported to respond to NGF during early development; however, it is not known whether the effects of NGF on their development are similar to those on septal cholinergic neurons. We prepared cultures of dissociated cells from fetal rat septum, striatum, and nucleus basalis and investigated the development of cholinergic neurons localized in these three different areas in the presence or absence of NGF. We now report that, first, cholinergic neurons of striatum and nucleus basalis develop a more extensive fiber network and contain more acetylcholinesterase (AChE) per neuron than do cholinergic neurons of septum. The amount of choline acetyltransferase (ChAT) per cholinergic neuron is approximately the same in all three culture types when grown in the absence of NGF. Second, NGF treatment increases and anti-NGF treatment decreases the number of AChE-positive neurons in cultures of low plating density, suggesting that NGF is able to promote survival of cholinergic neurons of all three areas studied. Third, NGF increases the total length of fibers and the number of branching points of cholinergic neurons in septal cultures but not in cultures of striatum and nucleus basalis. Fourth, NGF treatment increases AChE activity in septal but not in nucleus basalis or striatal cultures, suggesting that AChE activity reflects the extent of the fiber network of cholinergic neurons of all areas. Fifth, NGF treatment produces severalfold elevations in ChAT activity in septal cultures and more modest increases in cultures of nucleus basalis and striatum, suggesting that NGF is able to stimulate ChAT activity also in the absence of a stimulatory effect on survival and fiber growth. Our results demonstrate that, during early development, NGF is able to affect survival and differentiation of all three populations of forebrain cholinergic neurons. However, the finding that the morphology of cholinergic neurons of nucleus basalis and their response to NGF differed from those of septal cholinergic neurons suggests that they represent functionally distinct neuronal populations. The development of cholinergic striatal interneurons in vitro was similar to that of nucleus basalis neurons, suggesting that determinants in the local environment influence their developmental fate in situ. It is speculated that the availability of endogenous NGF is one of the determinants involved in these developmental decisions.Keywords
This publication has 72 references indexed in Scilit:
- Retrograde transport of NGF by early chick embryo spinal cord motoneuronsDevelopmental Biology, 1988
- Development of cholinergic neurons in the septal/diagonal band complex of the ratDevelopmental Brain Research, 1987
- Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: Comparison with choline acetyltransferaseDevelopmental Biology, 1987
- Basal forebrain magnocellular neurons stain for nerve growth factor receptor: Correlation with cholinergic cell bodies and effects of axotomyJournal of Neuroscience Research, 1987
- Cholinergic neurons of fetal rat telencephalon in aggregating cell culture respond to NGF as well as to protein kinase C-activating tumor promotersDevelopmental Brain Research, 1986
- Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor.The Journal of cell biology, 1985
- NGF-Mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: Evidence for a physiological role of NGF in the brain?Developmental Brain Research, 1983
- An anatomical study of the development of the septo-hippocampal projection in the ratDevelopmental Brain Research, 1983
- Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell culturesDevelopmental Brain Research, 1982
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976