Adaptations of the left ventricle to chronic pressure overload.

Abstract
Left ventricular (LV) function during the adaptation to chronic pressure overload produced by an ascending aortic constriction was analyzed in conscious dogs, instrumented with intraventricular micromanometers and pairs of ultrasonic crystals for measurement of LV wall thickness (WTh) and internal LV chamber diameter. During inflation of the cuff to produce LV pressures averaging 220 mg Hg, calculated peak wall stress (WSt) increased by 55% above control while percent shortening decreased by 24% and mean circumferential shortening velocity (VCF) decreased by 39% from control. By 9 days (mean) after aortic constriction, the cross-sectional area (CSA) of the LV wall increased by 10% and peak WSt fell to 37% above control. End-diastolic diameter (EDD) increased to 4% above control, while percent shortening and mean VCF remained reduced at -12% and -20% of control, respectively. During the phase of concentric hypertrophy (mean 2 1/2 weeks), CSA increased further to 15% above control and WSt fell to 22% above ...