Abstract
Gill cilia and sperm flagella from the lamellibranch mollusc Aequipecten irradians were compared with respect to their ultrastructures and adenosinetriphosphatase activities. Cilia were isolated from excised gills using 3 different solutions: twice-concentrated seawater, 10 % ethanol-10 mM CaCl2 and 60% glycerol. In each case deciliation occurs by the severance of the cilium at the junction of the transition zone and the basal body, and in each case the ciliary ultrastructure is maintained. Sperm flagella were purified by mechanical decapitation. Cilia and sperm flagella have similar fine structures, except that the matrix of the cilia contains substantially more electron-dense material than that of flagella. The ATPase activity of purified cilia is approximately 0.09,µmol P1/min/mg protein; that of flagella is 0.13. Ciliary and flagellar axonemes were prepared by repeated extraction of the membranes with 1% Triton X-100. Ciliary axonemes maintain their 9 + 2 cylindrical orientation, whereas flagellar axonemes often appear as opened or fragmented arrays of the 9 + 2 structure, due to the partial breakdown of the flagellar nexin fibres. A-subfibre arms which were obvious in whole organelles are rarely seen in axoneme preparations. Again the ciliary matrix is considerably more amorphous than in flagellar axonemes. The ATPase activities of ciliary and flagellar axonemes are 0.13 and 0.12 µmol P1/min/mg protein respectively; however, activities of ciliary axonemes may vary by a factor of 2, depending on the method of isolation. The difficulty in observing A-subfibre arms in cross-sections of ciliary and flagellar axonemes is discussed in terms of random, non-reinforcing arrangements of the dynein arms.