THREE‐DIMENSIONAL STRUCTURE OF EXTRACELLULAR MATRIX REVERSIBLY REGULATES MORPHOLOGY, PROLIFERATION AND COLLAGEN METABOLISM OF PERISINUSOIDAL STELLATE CELLS (VITAMIN A‐STORING CELLS)

Abstract
The three-dimensional structure of the extracellular substratum was found to regulate reversibly the morphology, proliferation and collagen synthesis of perisinusoidal stellate cells (lipocytes, i.e. fat-storing 'Ito' cells). On non-coated polystyrene and type I collagen-coated culture dishes, the cells spread well and extended their cellular processes. On the surface of type I collagen gels, the cells gathered and formed a mesh-like structure. However, in type I collagen gel where the cells were surrounded by type I collagen three-dimensionally, the cells extended their fine cellular processes and resembled the star-shaped stellate cells seen in vivo. The cell proliferation was more prominent in culture dishes coated with type I collagen or in polystyrene culture dishes than on or in type I collagen gels. The collagen synthesis was affected in the same manner. These data indicate that the nature and the three-dimensional structure of the extracellular matrix (ECM) can regulate morphology, proliferation and functions of the perisinusoidal stellate cells. In order to examine the reversibility of these regulations, we liberated cultured cells with trypsin or with purified bacterial collagenase and re-seeded them onto or into each substratum. The cells changed their shape, rate of proliferation and collagen synthesis according to each new substratum. These results indicate that the three-dimensional structure of ECM reversibly regulates the morphology, proliferation rate and functions of the perisinusoidal stellate cells.

This publication has 0 references indexed in Scilit: