Abstract
70-GHz-band orthogonal frequency-division multiplexing (OFDM) transceivers were developed by combining self-heterodyne transmission with two-element diversity reception. The transceivers were used to study and demonstrate a millimeter-wave wireless personal network that enables cost-effective broadband data transmissions in a multipath channel environment. A 100-MHz sampling OFDM modulator/demodulator was developed for the baseband part. It has a payload data rate of 100 Mb/s using quadrature phase-shift keying (QPSK) modulation and a coding rate of 3/4 (many other modulations and coding rate are available). The bit error rate was experimentally evaluated when a pair of devices was placed on a wooden table under line-of-sight path conditions. The results showed that the combined use of the self-heterodyne technique and two-element diversity receiver successfully avoids serious signal fading at unpredictable transmission distances. The transceiver with QPSK modulation and coding rate of 1/2 for forward error correction achieves error-free data transmission over a distance of up to 3.4 m. In addition, a successful transmission in 64 quadrature amplitude modulation mode was demonstrated, although the communication range was quite short

This publication has 5 references indexed in Scilit: