Design of multivariate selection experiments to estimate genetic parameters

Abstract
The precision of estimates of genetic variances and covariances obtained from multivariate selection experiments of various designs are discussed. The efficiencies of experimental designs are compared using criteria based on a confidence region of the estimated genetic parameters, with estimation using both responses and selection differentials and offspring-parent regression. A good selection criterion is shown to be to select individuals as parents using an index of the sums of squares and crossproducts of the phenotypic measurements. Formulae are given for the optimum selection proportion when the relative numbers of individuals in the parent and progeny generations are fixed or variable. Although the optimum depends on “a priori” knowledge of the genetic parameters to be estimated, the designs are very robust to poor estimates. For bivariate uncorrelated data, the variance of the estimated genetic parameters can be reduced by approximately 0.4 relative to designs of a more conventional nature when half of the individuals are selected on one trait and half on the other trait. There are larger reductions in variances if the traits are correlated.