(1/2,1/2) Representation space: An ab initio construct

  • 30 December 2000
Abstract
A careful ab initio construction of the finite-mass (1/2,1/2) representation space of the Lorentz group reveals it to be a spin-parity multiplet. In general, it does not lend itself to a single-spin interpretation. We find that (1/2,1/2) representation space for massive particles naturally bifurcates into a triplet and a singlet of opposite relative intrinsic parties. The text-book separation into spin one and spin zero states occurs only for certain limited kinematical settings. We construct a wave equation for the (1/2,1/2) multiplet, and show that the particles and antiparticles in this representation space do not carry a definite spin but only a definite relative intrinsic parity. In general, both spin one and spin zero are covariantly inseparable inhabitants of massive vector fields. This last observation suggests that scalar particles, such as the Higgs, may be intrinsic part of massive vector gauge fields.

This publication has 0 references indexed in Scilit: