Tea2p Is a Kinesin-like Protein Required to Generate Polarized Growth in Fission Yeast
Open Access
- 2 October 2000
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 151 (1) , 15-28
- https://doi.org/10.1083/jcb.151.1.15
Abstract
Cytoplasmic microtubules are critical for establishing and maintaining cell shape and polarity. Our investigations of kinesin-like proteins (klps) and morphological mutants in the fission yeast Schizosaccharomyces pombe have identified a kinesin-like gene, tea2+, that is required for cells to generate proper polarized growth. Cells deleted for this gene are often bent during exponential growth and initiate growth from improper sites as they exit stationary phase. They have a reduced cytoplasmic microtubule network and display severe morphological defects in genetic backgrounds that produce long cells. The tip-specific marker, Tea1p, is mislocalized in both tea2-1 and tea2Δ cells, indicating that Tea2p function is necessary for proper localization of Tea1p. Tea2p is localized to the tips of the cell and in a punctate pattern within the cell, often coincident with the ends of cytoplasmic microtubules. These results suggest that this kinesin promotes microtubule growth, possibly through interactions with the microtubule end, and that it is important for establishing and maintaining polarized growth along the long axis of the cell.Keywords
This publication has 87 references indexed in Scilit:
- [56] Molecular genetic analysis of fission yeast Schizosaccharomyces pombePublished by Elsevier ,2004
- Thiamine-repressible expression vectors pREP and pRIP for fission yeastPublished by Elsevier ,2003
- Molecular Linkage Underlying Microtubule Orientation Toward Cortical Sites in YeastScience, 2000
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- Predicting Coiled Coils from Protein SequencesScience, 1991
- Micromanipulation studies of the asyrnmetric positioning of the maturation spindle in Chaetopterus sp. Oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindleCell Motility, 1988
- Beyond self-assembly: From microtubules to morphogenesisCell, 1986
- Two cell division cycle genes NDA2 and NDA3 of the fission yeast Schizosaccharomyces pombe control microtubular organization and sensitivity to anti-mitotic benzimidazole compoundsJournal of Molecular Biology, 1983
- Cold-sensitive nuclear division arrest mutants of the fission yeast Schizosaccharomyces pombeJournal of Molecular Biology, 1983
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979