Observations of the Surface Properties of the Ice Sheets by Satellite Radar Altimetry

Abstract
By comparing modelled and averaged satellite altimeter return, it is demonstrated that time profiles of altimeter return can be used to provide important information on the surface properties of the ice sheets. Altimeter ice-sheet radar echoes from low altitudes and/or relatively low latitudes are, in general, dominated by surface scattering and, in Greenland, the area of surface-dominated return broadly coincides with the zone of summer melting. Seasonal variations in the echo wave-form shapes are negligible in all regions studied, with the possible exception of an area near the margin of the Greenland dry-snow zone. In general, the model explains well the observed variations in mean wave-form shape, but small discrepances between the model wave forms and the recorded wave forms indicate that sub-surface layers may be influencing the shape of the return. The possibility of deriving quantitative estimates of surface properties is explored by fitting model returns to averaged altimeter wave forms from the Wilkes Land plateau in Antarctica. Surface roughness can be measured unambiguously from the wave-form data, but estimations of other parameters, such as grain-size, snow density, and snow temperature are found to be ambiguous because different surface parameters have a similar influence on the shape of the return. Despite this, the derived estimates compare well with ground-based observations and suggest that the satellite altimeter may have an important role to play in providing information on the surface properties of the ice sheets.