Microscopic X-ray fluorescence analysis and related methods with laboratory and synchrotron radiation sources

Abstract
The present status of microprobe versions of XRF analysis with tube excitation and with synchrotron radiation sources is reviewed with respect to analytical parameters such as lateral resolution and imaging capability, and achievable detection limits, precision and accuracy. The main characteristics of the method are contrasted with those of other microanalytical techniques. For laboratory source µ-XRF, results with a rotating anode tube equipped with capillary X-ray optics are discussed in terms of sensitivity and achievable lateral resolution. The possibilities of the new third generation synchrotron radiation storage rings, especially those of the European Synchrotron Radiation Facility (ESRF) and its X-ray micro-fluorescence, imaging and diffraction beamline (ID 22) are discussed and related to second generation storage rings. Some characteristic applications are given to illustrate the recent possibilities of the methodologies, in particular for the characterization of atmospheric particles, and in an analytical problem related to archaeology.

This publication has 0 references indexed in Scilit: