On the measurement of the proton-air cross section using air shower data

Abstract
The analysis of high-energy air shower data allows one to study the proton-air cross section at energies beyond the reach of fixed target and collider experiments. The mean depth of the first interaction point and its fluctuations are a measure of the proton-air particle production cross section. Since the first interaction point in air cannot be measured directly, various methods have been developed in the past to estimate the depth of the first interaction from air shower observables in combination with simulations. As the simulations depend on assumptions made for hadronic particle production at energies and phase space regions not accessible in accelerator experiments, the derived cross sections are subject to significant systematic uncertainties. The focus of this work is the development of an improved analysis technique that allows a significant reduction of the model dependence of the derived cross section at very high energy. Performing a detailed Monte Carlo study of the potential and the limitations of different measurement methods, we quantify the dependence of the measured cross section on the used hadronic interaction model. Based on these results, a general improvement to the analysis methods is proposed by introducing the actually derived cross section already in the simulation of reference showers. The reduction of the model dependence is demonstrated for one of the measurement methods.

This publication has 0 references indexed in Scilit: