AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1

Abstract
The Wnt signalling pathway is essential for development and organogenesis1,2,3. Wnt signalling stabilizes β-catenin, which accumulates in the cytoplasm, binds to T-cell factor (TCF; also known as lymphocyte enhancer-binding factor, LEF) and then upregulates downstream genes4,5,6. Mutations in CTNNB1 (encoding β-catenin) or APC (adenomatous polyposis coli) have been reported in human neoplasms including colon cancers and hepatocellular carcinomas7,8,9,10,11,12,13 (HCCs). Because HCCs tend to show accumulation of β-catenin more often than mutations in CTNNB1 , we looked for mutations in AXIN1, encoding a key factor for Wnt signalling, in 6 HCC cell lines and 100 primary HCCs. Among the 4 cell lines and 87 HCCs in which we did not detect CTNNB1 mutations, we identified AXIN1 mutations in 3 cell lines and 6 mutations in 5 of the primary HCCs. In cell lines containing mutations in either gene, we observed increased DNA binding of TCF associated with β-catenin in nuclei. Adenovirus mediated gene transfer of wild-type AXIN1 induced apoptosis in hepatocellular and colorectal cancer cells that had accumulated β-catenin as a consequence of either APC, CTNNB1 or AXIN1 mutation, suggesting that axin may be an effective therapeutic molecule for suppressing growth of hepatocellular and colorectal cancers.