Microgravity Reduces the Differentiation of Human Osteoblastic MG-63 Cells
- 1 May 1997
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 12 (5) , 786-794
- https://doi.org/10.1359/jbmr.1997.12.5.786
Abstract
Spaceflight leads to osteopenia in both humans and animals, principally as a result of decreased bone formation, which might be the consequence of impaired osteoblast differentiation. The effect of microgravity on osteoblast differentiation in vitro was investigated using the human osteosarcoma cell line MG-63. Genes related to matrix formation and maturation were quantified both at the protein and mRNA level in untreated and hormone-treated (dihydroxyvitamin D3 [1,25(OH)2D3], 10(-7) M; transforming growth factor beta2 (TGF-beta2), 10 ng/ml) cells cultured for 9 days under microgravity conditions aboard the Foton 10 satellite and compared with ground and inflight unit-gravity cultures. The expression of alkaline phosphatase (ALP) activity following treatment at microgravity increased only by a factor of 1.8 compared with the 3.8-fold increase at unit-gravity (p < 0.01), whereas no alteration was detected in the production of collagen type I between unit- and microgravity. In addition, gene expression for collagen Ialpha1, ALP, and osteocalcin following treatment at microgravity was reduced to 51, 62, and 19%, respectively, of unit-gravity levels (p < 0.02). The lack of correlation between collagen type I gene and protein expression induced by microgravity is most likely related to the different kinetics of gene and protein expression observed at unit-gravity: following treatment with 1,25(OH)2D3 and TGF-beta2, collagen Ialpha1 mRNA increased gradually during 72 h, but collagen type I production was already maximal after treatment for 48 h. In conclusion, microgravity decreases the activity of osteoblasts in vitro; in particular the differentiation of osteoblasts in response to systemic hormones and growth factors is reduced by microgravity.Keywords
This publication has 31 references indexed in Scilit:
- The skeletal effects of spaceflight in growing rats: Tissue-specific alterations in mrna levels for TGF-βJournal of Bone and Mineral Research, 1995
- The Effect of Space and Parabolic Flight on Macrophage Hematopoiesis and FunctionExperimental Cell Research, 1995
- Cell Proliferation Inhibition in Reduced GravityExperimental Cell Research, 1994
- Space shuttle flight (STS‐45) of L8 myoblast cells results in the isolation of a nonfusing cell line variantJournal of Cellular Biochemistry, 1994
- Journal of Bone and Mineral ResearchJournal of Bone and Mineral Research, 1992
- Nuclear responses to protein kinase C signal transduction are sensitive to gravity changesExperimental Cell Research, 1991
- Osteocalcin secretion by the human osteosarcoma cell line MG-63Journal of Bone and Mineral Research, 1990
- Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridizationJournal of Bone and Mineral Research, 1990
- Effects of weightlessness on bone mass and osteoclast number in pregnant rats after a five-day spaceflight (COSMOS 1514)Bone, 1987
- Inhibition of Bone Formation During Space FlightScience, 1978