Comparative performance of linear and nonlinear neural networks to predict irregular breathing

Abstract
Breathing adaptation during external-beam radiotherapy is a matter of great concern because uncompensated tumour motion requires extended treatment margins that endanger sensitive tissue. Compensation strategies include beam gating, collimator tracking and robotic beam re-alignment. All of these schemes have a system latency of up to several hundred milliseconds, which calls in turn for predictive control loops. Irregularities in breathing make prediction difficult. We have evaluated the performance of two classes of control loop algorithms-the linear adaptive filter and the adaptive nonlinear neural network-for highly irregular patient breathing behaviours. The neural network demonstrated robust adaptability to all of the observed breathing patterns while the linear filter failed in a significant percentage of cases. For those cases where the linear filter could function, it made less accurate predictions than the neural network. Because the neural network presents no additional computational burden in the control loop we conclude that it is the preferred choice among heuristic predictive algorithms.