Disruption of GnRH Pulses by Anti-GnRH Serum and Phentolamine Obliterates Pulsatile LH but not FSH Secretion in Ovariectomized Rabbits
- 1 January 1991
- journal article
- research article
- Published by S. Karger AG in Neuroendocrinology
- Vol. 53 (4) , 382-391
- https://doi.org/10.1159/000125745
Abstract
It has been hypothesized that the secretion of gonadotropins, i.e. luteinizing hormone (LH) and follicle-stimulating hormone (FSH), is driven by a synchronized neural network (‘pulse generator’). This network, regulated in part by α-adrenergic activity, ultimately generates bursts of hypothalamic gonadotropin-releasing hormone (GnRH) release. In this study, we used the push-pull (PP) perfusion technique in ovariectomized rabbits to investigate three aspects of the (‘GnRH/gonadotropin pulse generator’) hypothesis. The objectives were to determine: (1) if plasma LH and FSH pulses occur concomitantly with mediobasal hypothalamic (MBH-) GnRH pulses, (2) changes in the patterns of pulsatile LH and FSH secretion when pulsatile MBH GnRH signals are interrupted by either local immunoneutralization of GnRH or intravenous infusion of the α-adrenergic antagonist phentolamine (PHEN, 4 mg/kg BW), and (3) whether third cerebroventricular (3VT-) GnRH patterns reflect neuronal GnRH release from the MBH. We found that while both plasma LH and FSH patterns were pulsatile, MBH GnRH pulses were significantly coupled only with LH pulses (94% coincidence). Both the local immunoneutralization of MBH GnRH pulses and the PHEN-induced suppression of MBH GnRH pulses obliterated the pulsatile secretion of LH, but not FSH. Neither MBH GnRH nor plasma LH or plasma FSH pulses were concurrent with 3VTGnRH pulses. However, the PP perfusion of the 3VT appeared to alter the pulsatile release of MBH GnRH and pituitary LH. The results support the hypothesis that in the absence of ovarian signals, the ‘pulse generator’ is maintained by tonic α-adrenergic input and that a ‘cellular unity’ of MBH GnRH release (GnRH pulses) drives the gonadotrophs to secrete LH in pulses. In contrast, the pulsatile release of FSH appears to involve additional nonovarian regulatory events to those controlling LH secretion.Keywords
This publication has 0 references indexed in Scilit: