Theory of Low-Mass Stars and Substellar Objects

Abstract
Since the discovery of the first bona-fide brown dwarfs and extra-solar planets in 1995, the field of low mass stars and substellar objects has considerably progressed, both from theoretical and observational viewpoints.Recent developments in the physics entering the modeling of these objects have led to significant improvements in the theory and to a better understanding of their mechanical and thermal properties. This theory can now be confronted with observations directly in various observational diagrams (color-color, color-magnitude, mass-magnitude, mass-spectral type), a stringent and unavoidable constraint which became possible only recently, with the generation of synthetic spectra. In this paper, we present the current state-of-the-art general theory of low-mass stars and sub-stellar objects, from one solar mass to one Jupiter mass, regarding primarily their interior structure and evolution. This review is a natural complement to the previous review on the atmosphere of low-mass stars and brown dwarfs (Allard et al 1997). Special attention is devoted to the comparison of the theory with various available observations. The contribution of low-mass stellar and sub-stellar objects to the Galactic mass budget is also analysed.

This publication has 0 references indexed in Scilit: