Evaluation of the Potential for Wintertime Quantitative Precipitation Forecasting over Mountainous Terrain with an Explicit Cloud Model. Part I: Two-Dimensional Sensitivity Experiments
Open Access
- 1 January 1992
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 31 (1) , 26-50
- https://doi.org/10.1175/1520-0450(1992)031<0026:eotpfw>2.0.co;2
Abstract
A prolonged orographic precipitation event occurred over the Sierra Nevada in central California on 12–13 February 1986. This well-documented case was investigated via the nonhydrostatic version of the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS). The two-dimensional, cross-barrier simulations produced flow fields and microphysical structure, which compared well with observations. The feasibility of producing quantitative precipitation forecasts (QPF) with an explicit cloud model was also demonstrated. The experiments exhibited a profound sensitivity to the input sounding. Initializing with a sounding, which is representative of the upstream environment, was the most critical factor to the success of the simulation. The QPF was also quite sensitive to input graupel density. Decreasing the density of graupel led to increases in the overall precipitation. Sensitivities to other microphysical parameters as well as orography and dynamics were also examined. Abstract A prolonged orographic precipitation event occurred over the Sierra Nevada in central California on 12–13 February 1986. This well-documented case was investigated via the nonhydrostatic version of the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS). The two-dimensional, cross-barrier simulations produced flow fields and microphysical structure, which compared well with observations. The feasibility of producing quantitative precipitation forecasts (QPF) with an explicit cloud model was also demonstrated. The experiments exhibited a profound sensitivity to the input sounding. Initializing with a sounding, which is representative of the upstream environment, was the most critical factor to the success of the simulation. The QPF was also quite sensitive to input graupel density. Decreasing the density of graupel led to increases in the overall precipitation. Sensitivities to other microphysical parameters as well as orography and dynamics were also examined.Keywords
This publication has 0 references indexed in Scilit: