Inverse problem in classical mechanics: Dissipative systems
- 1 October 1983
- journal article
- Published by Springer Nature in International Journal of Theoretical Physics
- Vol. 22 (10) , 931-946
- https://doi.org/10.1007/bf02080477
Abstract
No abstract availableKeywords
This publication has 14 references indexed in Scilit:
- On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamicsJournal of Physics A: General Physics, 1981
- Symmetries and conservation laws for generalized hamiltonian systemsInternational Journal of Theoretical Physics, 1981
- Does the equation of motion determine commutation relations?Physical Review D, 1980
- Magnetic monopoles with no stringsNuclear Physics B, 1980
- Ambiguities in the Lagrangian and Hamiltonian formalism: Transformation propertiesIl Nuovo Cimento B (1971-1996), 1977
- Lagrangian and Hamiltonian formalisms: An analysis of classical mechanics on tangent and cotangent bundlesIl Nuovo Cimento B (1971-1996), 1976
- Dissipative systems on maniforldsInventiones Mathematicae, 1972
- q-Equivalent Particle Hamiltonians. I. The Classical One-Dimensional CaseJournal of Mathematical Physics, 1966
- Application des formes extérieures du 2e ordre à la dynamique newtonienne et relativisteAnnales de l'institut Fourier, 1951
- LXXXV. On oscillation hysteresis in a triode generator with two degrees of freedomJournal of Computers in Education, 1922