The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA.

Abstract
A key step in homologous recombination is the alignment and pairing of homologous DNAs. The Escherichia coli RecA protein initiates pairing by binding to single-strand DNA, forming a helical nucleoprotein filament. We demonstrate that in the presence of the nonhydrolyzable ATP analogue adenosine 59-[gamma-thio]triphosphate and ADP, RecA can pair a homologous oligonucleotide 15 bases long with a duplex DNA to yield synaptic complexes consisting of the oligonucleotide and duplex DNA stabilized by RecA. RecA can pair as few as eight bases of homology to form such synaptic complexes. The homologous DNAs remain paired to each other upon removal of RecA provided that the length of shared homology is at least 26 base pairs. Based on our findings and the work of others, we propose that in vitro, one helical turn of a RecA nucleoprotein filament containing approximately six RecA monomers and 15 bases of single-strand DNA is the functional unit sufficient to carry out the homology search.